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Abstract—This flow in rivers is concerned with unsteady 

flow in open channel and it mathematically governed by the 

Saint Venant equation, using a four-point implicit finite 

difference scheme. For a one-dimensional applications, the 

relevant flow parameters are functions of time, and 

longitudinal positions. Considering the equations for the 

conservation of mass (continuity) and conservation of 

momentum. The mathematical method is empirical with the 

computer revolution, numerical methods are now effective 

to develop the hydraulic model. Conventional methods used 

to compute discharge, such as stage-discharge and stage-

fall discharge relationships has been inadequate. Further 

research is recommended to include tributaries in rivers.  

Keyword—Finite difference scheme, Numerical methods, 

Momentum equations. 

 

I. INTRODUCTION 

For engineering purposes, most of the solutions of the 

unsteady flow equations are numerical and are determined 

by using digital computers. There have been a great number 

of different numerical techniques that could be used. Some 

can be discarded as being inaccurate or unstable or too time 

consuming. However, there is still no answer as to which is 

best.  

Further are two fundamental divisions of methods for the 

solution of hyperbolic partial differential equations, 

describing one-dimensional unsteady flow in open 

channels: The hypothesis of the one dimensional flow is 

very often problematic when rivers with flooded plains are 

in question, so that the question is often raised whether the 

mathematical model should be one-dimensional or two-

dimensional, Doyle, W. H. Jr. (1983). In the case of two 

dimensional flow there are three independent variables: two 

spatial ones (x) and (y), and the time variable (t), assuming 

gradually varied flow conditions the flood propagation 

equations could be written by analogy to the tidal equations, 

Faye, R. E. (1984) . The system of three equations is 

analogous to the system derived by St. Venant for the flow 

in one spatial dimension. The main assumptions are the 

uniform distristatic vertical pressure distribution, Brakke 

K. (2008) 

In engineering practice different methods are used for the 

two-dimensional modeling of flood-plains, the quasi two-

dimensional or “cell” model, and the mathematical two-

dimensional model, explicit or implicit. On the basic 

principles of cell model, the flood plain remains completely 

submerged only during the flood peak. Out of this period, 

the plain still forms a system of cells separated by dikes, 

irrigation channels, culverts, etc. all of them influencing the 

direction of the flow, Bakes, I. (2015). If it is possible to 

assume that the flood plains, as well as the river bed can be 

divided into a certain number of cells, then each cell 

communicates with the neighboring cells and the links 

between them correspond to an exchange of the flow, 

Xiaoyong Zhan (2003). The limits of the cells are defined 

by natural boundaries, such as are roads, dikes, natural bank 

levels, etc.  

The cell centers must be defined so that the direction of the 

flow is correctly allowed for at any time during the flood. 

The slope of the water surface is defined for each cell (i) by 

the corresponding horizontal levels (Zi), assumed at the 

center of the cell, Fread, D. L. (2008). The area ABCD can 

be treated as one cell, but in this case the model would not 

reproduce the slope between cross-section AB and CD. This 

means that the area ABCD must be divided in two cells: 

ABEF and EFCD, with representing water level at the 

centers of these cells, (T’) and (T”) respectively. For each 

cell (i) the continuity equation and discharge equation 

between this cell and the adjacent cells must be written. The 

continuity equation for a cell can be derived based on the 

following two fundamental hypotheses: The volume (⋁𝑖) of 

the water stored in cell (i) is directly related to the level 

(𝑍𝑖), and the dischargew between two adjacent cells (i) and 

(k) is a function of the corresponding levels (𝑍𝑖) and (𝑍𝑘). 

The change in the volume of water stored in cell during 

time (Δ𝑡) can be defined.  

The method of characteristics deals with problems imposed 

by nature, but often with serious difficulties. However, this 
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method has a very important role in determining the 

boundary values in many fixed-point finite difference 

methods. 

The general aspects of the method of characteristics was 

explained for St. Venant's equations written in the form of  
𝜕𝐴

𝜕1
∗
𝜕

𝜕𝑥
(𝑈. 𝐴) = −𝑞𝑒                                                        (1) 

Momentum Equation 
𝟏

𝒈
−

𝜕𝑢

𝜕𝑡
+

𝑢

𝑔
        

𝜕𝑢

𝜕𝑥
+

1

𝐵
         

𝜕𝐴

𝜕𝑥
= 𝑆0 − 𝑆𝑓                          (2) 

Combining the two basic equations with the two equations 

of the total derivatives of two dependent variables (V) and 

(A), 

𝑑𝑉 =
𝜕𝑢

𝜕𝑡
 .  𝑑𝑡 +

𝜕𝑣

𝜕𝑥
. 𝑑𝑥                                                     (3) 

𝑑𝐴 =
𝜕𝐴

𝜕𝑡
 .  𝑑𝑡 +

𝜕𝐴

𝜕𝑥
. 𝑑𝑥                                                     (4) 

and by solving the system of these four equations, the 

resulting characteristic equations are obtained: 

𝑑𝑥

𝑑𝑡
= 𝑉 ± √𝑔.

𝐴

𝐵
                                                                (5) 

𝑑𝑣 ± √
𝑔

𝐴.𝐵
  .  𝑑𝐴 = [(𝑆𝑂 − 𝑆𝑓). 𝑔 ±

𝑞1

𝐵
. √𝑔.

𝐵

𝐴
 ]              (6) 

The equations (5) – (6) are four ordinary partial differential 

equations with the unknown values being (x; t; v; A). The 

integrals are line integrals along the characteristics. No 

approximations have been made. 

𝐴(𝑥, 𝑡𝑂) =  𝐴(𝑥), 𝑎𝑛𝑑                                                     (7) 

𝑉(𝑥, 𝑡𝑂) =  𝑉(𝑥)                                                             (8) 

The problem has to be defined for 𝑡 > 𝑎𝑛𝑑 (𝑡𝑂) 

corresponds to the steady flow regime.  

We assumed that in points 1, 2, 3,..., see Fig. (1B), Eqs. (7 

and 8) that represent the initial conditions are known.  

The objective of this paper is to fill the (𝑥, 𝑡) - plane with 

the net of the characteristics, so that the dependent variables 

can be defined at the intersections. This means, that by 

starting from "known" points 1, 2, 3,  ..., the values of two 

dependent and two independent variables in points 5, 6 and 

7, can be calculated by solving the system of equations (5) 

and (6). Following the above described procedure, the 

whole (𝑥, 𝑡) - plane is filled with characteristics, as shown 

in Fig. (1) so that the dependent variables are defined at the 

intersections. 

Stability is tested by asking if a particular part of the 

solution, perhaps an initially unimportant part, is likely to 

grow without limit until it destroys the calculation. 

The stability is defined by the following well known 

equation: 
Δ𝑡

Δx
≤

1

|𝑉0±𝐶0|
                                                                         (9) 

which is known as the Courant - Lewy – Fricdrichs 

condition, or often simply the Courant condition, where 

(𝑉0) - is  the initial value of the mean flow velocity; (𝐶0) - 

the initial value of the small wave celerity. The boundary 

conditions are specified at a boundary, the number of 

conditions must be exactly equal to the number of 

characteristics originating at that boundary.  

 

II. METHOD 

The four possibilities for external boundaries are shown in 

Fig. (2) 

In case a), the condition is specified at the upstream 

boundary and is used with the equation of the negative 

characteristic (R-M) to calculate the second dependent 

variable at point (M). 

In case b), one condition is given at the downstream 

boundary, and is used with the equation of positive 

characteristic along (L-M). 

In case c), the dependent variables must be specified along 

the boundary so that the values at (M) are known prior to 

the solution. 

In case d), no boundary values are specified and the 

unknowns must be interpolated between (L-M)   (or R- M), 

to obtain the dependent variables on the boundary. 

In literature one can find many methods of characteristics, 

one of which will be presented as follows: 

The basic equations (5) and (6) will be written in the 

following form: 

 the pair of equations used for defining the positive 

characteristic: 

𝑑𝑥 = (𝑣 + √𝑔. 𝐴/𝐵). 𝑑𝑡                                                                                      

(10) 

𝑑𝐹+ + 𝑎+ .  𝑑𝑡 = 0                                                                                               

(11) 

 the air of equations used for defining the negative 

characteristic: 

𝑑𝑥 = 𝑣 − √𝑔.
𝐴

𝐵
.                                                                                  

(12) 

𝑑𝐹− + 𝑎− .  𝑑𝑡 = 0                                                                                                                                  

(13) 

Where: 

𝐹+ + 𝑈 ±
𝑉

2
                                                                                                                                                

(14) 

𝑈 = √𝑔

2
. ∫

𝑑𝐴

√𝐴.𝐵
                                                                                                                                           

(15) 

𝑎+ =
1

2
. [±𝑔. (𝑆𝑓 − 𝑆𝑜) +

𝑞1

𝐵
√𝑔.

𝐵

𝐴
 ]                                                                                                     

(16) 

If the derivatives in the equations (14-15) are replaced by 

finite differences, the basic equations can be written in the 

following form: 
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𝑋𝑀 − 𝑋𝑈 = 𝛼𝑈. (𝑡𝑀 − 𝑡𝑈)                                              (17) 

𝐹𝑀
± − 𝐹𝑢

− + 𝑎𝑢
+. (𝑡𝑀 − 𝑡𝑈)                                               (18) 

𝑋𝑀 − 𝑋𝐷 = 𝛽𝐷 . (𝑡𝑀 − 𝑡𝐷)                                               (19) 

𝐹𝑀
− − 𝐹𝐷

− + 𝑎𝐷
−. (𝑡𝑀 − 𝑡𝐷) = 0                                        (20) 

 

Where: 

𝛼𝑢 = (𝑉 + √𝑔 . 𝐴/𝐵)
𝑈

                                                   (21) 

𝛽𝐷 = (𝑉 − √𝑔 . 𝐴/𝐵)𝐷                                                   (22) 

Other symbols are explained in Fig. (3) 

By using the equations (17-22), two independent unknowns 

in point (𝑀) are calculated first, and after that, functions 

(𝐹𝑀
±) and (𝐹𝑀

−) are defined.  

Two dependent variables in point (𝑀) can be calculated 

easily from: 

𝐹𝑀
± =

𝑉𝑀

2
+ 𝑈𝑀                                                                 (23) 

𝐹𝑀
− = −

𝑉𝑀

2
+ 𝑈𝑀                                                             (24) 

𝑈𝑀 = 𝑈(𝑍)                                                                      (25) 

 

THE FINITE DIFFERENCE METHODS ON A FIXED 

GRID 

In contrast to the characteristic methods, most hydraulic 

engineers dealing with river hydraulics prefer the fixed grid 

methods, in order to solve the equations of motion at a finite 

number of grid points in the (𝑥, 𝑡) - plane. There are two 

basic types of fixed grid finite difference schemes: the 

explicit and the implicit scheme. In explicit scheme, the 

equations are arranged so as to find the solution for one 

point at a time. In an implicit scheme, a group of advance 

points is solved by using simultaneous equations, which 

include the unknowns at all points in the group. 

 

III. RESULT 

Finite differences using a fixed rectangular net in the (𝑥, 𝑡) - 

plane but, it is very important to notice, that the theory of 

characteristics, even it is not used directly, comes into play 

in deciding the relative values of (Δ 𝑡) and (Δ 𝑥) which will 

ensure convergence. The criterion of stability is the same as 

for the method of characteristics, defined by Eq. 9, this 

being the most serious disadvantage of explicit methods. 

One of many existing variants of the explicit method of 

finite differences will be introduced, in order to explain the 

most important details of calculation.  

 

The derivatives are replaced by finite differences in the following way:  
𝜕𝑍

𝜕𝑥
≅

𝑍(𝑝,𝑖+1)−𝑍(𝑝,𝑖+1)

2.Δ𝑥
;  
𝜕𝑄

𝜕𝑥
≅

𝑄(𝑝,𝑖+1)−𝑄(𝑝,𝑖+1)

2.Δ𝑥

𝜕𝑍

𝜕𝑡
≅

𝑍(𝑝,𝑖+1)−𝑍(𝑝,𝑖+1)

Δ𝑡
;  
𝜕𝑄

𝜕𝑥
≅

𝑄(𝑝,𝑖+1)−𝑄̅(𝑝,𝑖+1)

Δ𝑥

𝑓(̅𝑝,𝑖+1) =
1

2
. [𝑓(𝑝,𝑖+1) + 𝑓(𝑝,𝑖+1)]

              

}
 
 

 
 

                                  (26) 

 

Where:  

(𝑍̅)𝑎𝑛𝑑 (𝑄̅) 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒𝑠; (𝑓) −  𝑎𝑛𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛; (𝑝) − 𝑡𝑖𝑚𝑒 𝑟𝑜𝑤; (𝑖) − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑜𝑤  

For the explanation of basic principles of this method, the St. Venant’s equations will be written in a form that corresponds more 

to the natural watercourses with a non-prismatic channel: 

 Equation of continuity: 
𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= −𝑞𝑒                                                                                                                                         (27) 

1

𝑔.𝐴
.
𝜕𝑄

𝜕𝑡
+

2𝑉

𝑔.𝐴
.
𝜕𝑄

𝜕𝑥
+ (1 − 𝐹𝑟).

𝜕𝑍

𝜕𝑥
=                                                                                                          (28) 

=
𝑉2

𝑔.𝐴
|
𝜕𝐴

𝜕𝑥
| −

𝑉.𝑞𝑒

𝑔.𝐴
− 𝑆𝑓 + 𝐷𝑒                                                                                                                      (29) 

Where:  

(Fr) – the Froude number; 

𝐷𝑒 =
𝑉 −𝑊𝑒𝑐𝑜𝑠𝛼

𝑔. 𝐴
. 𝑞𝑒; (𝑊𝑒) − 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑓𝑙𝑜𝑤;  

(𝛼) − 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑓𝑙𝑜𝑤; 

|𝜕𝐴/𝜕𝑥|𝑍=𝑐𝑜𝑛𝑠𝑡 − 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑛 − 𝑝𝑟𝑖𝑠𝑚𝑎𝑡𝑖𝑐 𝑐ℎ𝑎𝑛𝑛𝑒𝑙.  

The discretization according to Esq. (27), leads to: 

 Equation of continuity: 
𝐴(𝑝+1,𝑖)−𝐴̅(𝑝,𝑖±1)

Δ𝑡
+

𝑄(𝑝,𝑖+1)−𝑄(𝑝,𝑖+1)

2.Δ𝑥
+ 𝑞̅𝑒(𝑝,𝑖+1) = 0                                                                                  (30) 

 Momentum equation:  
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𝑄(𝑝,+1,𝑖)−𝑄̅(𝑝,𝑖±1)

Δ𝑡
+

2 .𝑄̅(𝑝,𝑖±1) 

𝐴̅(𝑝,𝑖±1)
 . [

𝑄(𝑝,𝑖+1)−𝑄̅(𝑝,𝑖−1)

2.Δ𝑥
] + [𝑔. 𝐴̅(𝑝,𝑖±1) −

𝑄̅2(𝑝,𝑖±1).𝐵̅
 
(𝑝,𝑖±1)

𝐴̅2(𝑝,𝑖±1).
] . [

𝑍(𝑝,𝑖+1)−𝑍(𝑝,𝑖−1)

2.Δ𝑥
] =  

=
𝑄̅2(𝑝,𝑖±1)

𝐴̅2(𝑝,𝑖±1)
. [
𝐴(𝑝,𝑖+1)−𝐴(𝑝,𝑖+1)

2.Δ𝑥
]
𝑍=𝑍0

+ 𝑔. 𝐴̅(𝑝,𝑖±1). [−𝑆𝑓̅(𝑝,𝑖±1)
+ 𝐷̅1(𝑝,𝑖±1)] −

𝑄̅ (𝑝,𝑖±1).𝑞̅
 1(𝑝,𝑖±1)

𝐴̅(𝑝,𝑖±1)
                 (31) 

Equations (30) and (31).represent a pair of algebraic equations, that can be used for the explicit determination of dependent 

variables 𝑄̅ (𝑝,+1,𝑖) and 𝑍(𝑝,+1,𝑖) in the unknown point (p+1,i), see Fig.(4). The above described scheme is valid for the so called 

"interior" points. For the "boundary" points (points 1. And D in Fig. 4), the upstream boundary condition and the negative 

characteristic are used for calculating the points in cross-section (1), while the downstream boundary condition and the positive 

characteristic are used for the calculation of the points in the downstream cross section (D). 

The equations used for calculating the points at the 

left boundary, in cross section X = X1 are: 

 the upstream boundary condition: 

𝑄𝑈 = 𝑄𝑈(𝑡) − 𝑖𝑛𝑓𝑙𝑜𝑤 ℎ𝑦𝑑𝑟𝑜𝑔𝑟𝑎𝑝ℎ  

 the negative characteristic equation: 
𝑄(𝑝+1,1)−𝑄(𝑝,1)

Δ𝑡
+ [𝑉(𝑝,1) − 𝐶(𝑝,1)].

𝑄(𝑝,2)−𝑄(𝑝,1)

Δ𝑥
+ 𝐵(𝑝,1)[𝑉(𝑝,1) − 𝐶(𝑝,1)].  

. {
𝑍(𝑝+1,1)−𝑍(𝑝−1)

Δ𝑡
+ [𝑉(𝑝,1) − 𝐶(𝑝,1)].

𝑍(𝑝,2)−𝑍(𝑝,1)

Δ𝑥
} = 𝑔. 𝐴(𝑝,1). [−𝑆𝑓(𝑝,1) + 𝐷𝑒(𝑝,1)] + 𝑉(𝑝,1)

2 .  

. [
𝐴(𝑝,1)−𝐴(𝑝,2)

Δ𝑥
]
𝑍=𝐶

+ 𝑞𝑒(𝑝,1). 𝐶(𝑝,1)                                                                                                           (32) 

The equations for calculating the points at the right boundary, in cross section X = XD, are: 

 the downstream boundary condition: 

𝑄𝐷  =  𝑄𝐷(𝑡) − outflow hydrograph  

 the positive characteristic equation: 
𝑄(𝑝+1,𝐷)−𝑄(𝑝,𝐷)

Δ𝑡
. [𝑉(𝑝,𝐷) − 𝐶(𝑝,𝐷)].

𝑄(𝑝+1,𝐷)−𝑄(𝑝,𝐷−1)

Δ𝑥
+ 𝐵(𝑝,𝐷). [𝑉(𝑝,𝐷) + 𝐶(𝑝,𝐷)]. {

𝑍(𝑝+1,𝐷)−𝑍(𝑝,𝐷)

Δ𝑡
+      

+[𝑉(𝑝,𝐷) + 𝐶(𝑝,𝐷)].
𝑍(𝑝,𝐷)−𝑍(𝑝,𝐷−1)

Δ𝑥
= 𝑔. 𝐴(𝑝,𝐷).  

. [−𝑆𝑓(𝑝,𝐷) + 𝐷𝑒(𝑝,𝐷)] + 𝑉(𝑝,𝐷)
2 . [

𝐴(𝑝,𝐷)−𝐴(𝑝,𝐷−1)

Δ𝑥
]
𝑍=𝐶

− 𝑞𝑒(𝑝,𝐷). 𝐶(𝑝,𝐷)                                                       (33) 

The computation by explicit scheme progresses step by s.tep; the solution is advanced to row (p+1) along the whole length 

of the river stretch that is analyzed. 

 

IV. DISCUSSION 

The exact mathematical models used for commutating the 

unsteady flow in rivers constitute difficult mathematical 

problems because of the nonlinear nature of the two 

simultaneous partial differential equations, as has already 

been mentioned. Since numerical techniques are too time 

consuming, manual computations are practically 

impossible. However, as it is sometimes far too expensive 

to use digital computers, simplified methods called 

“hydraulic-hydrologic” methods are still preferred in certain 

cases.  

The two partial differential equation (St.Venant’s 

equations), are simplified by omitting one of the two 

equations (momentum equation), or by omitting certain 

terms in this equation. The simplified equations can be 

solved In several different ways, including the numerical 

integration by using manual successive approximation 

procedures. Numerous hydraulic - hydrologic methods of 

flood routing have been developed up to now. Descriptions 

of these methods is recommended for further research. By 

using this method, the outflow hydrograph is obtained as a 

result of calculation. The exactness of the quasi-steady 

method depends on the quality of the storage curve. This 

curve can be defined through hydraulic computations 

(computation of the water levels and of the corresponding 

storage of a river channel), or by balancing the differences 

between the inflow into a river reach and the outflow from 

the reach, for the flood waves registered in the past. The 

rate of storage can be plotted versus discharge.  
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Fig. 1A: Discretization of flooded plain  

 
Fig. 1B: The net of characteristics 
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Fig. 2: Boundary Conditions 

 

 
Fig. 3 
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Fig. 4: 
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